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Abstract. The Barton-Nakajima-Namikawa relationship between the static dielectric con- 
stant, E ( O ) ,  and the DC conductivity o(O), observed in many glasses, o(0) = w , E ( ~ ) ,  with w, 
the loss peak frequency, has been generally assumed to signify a connection between the low 
frequency AC and the DC conduction processes. We argue that the connection is that both 
are due to non-local relaxation processes, the relaxation time of the DC process being 
effectively infinite. Above the loss peak, the relation u(w)  = ws is compatible with the pair 
approximation, i.e. a local relaxation theory. Below the loss peak. the role of Coulomb 
interactions is critical. If the effects of Coulomb interactions may be neglected, or treated 
perturbatively, the relaxation time of a process spanning a linear dimension x is proportional 
to x 2 .  But if Coulomb interactions dominate, the relaxation time may be proportional to x .  
Only the latter condition is compatible with the BNN relation, and is believed to be one of 
the most important distinctions between the ionic glasses and the Fermi (electronic) glass. 

1. Introduction 

In treating conduction processes of ionic glasses , a clear distinction has usually been 
drawn between polarization processes (frequency-dependent conductivities and die- 
lectric constants) and steady state transport processes (DC conductivity). The former 
are often treated in either a Debye or more complex relaxation theory, the latter 
by calculating a typical structural activation energy. It has often been argued that a 
distribution of relaxation times is necessary to explain the higher frequency behaviour 
(the pair approximation regime, Pollak and Geballe 1961, Austin and Mott 1969, Pollak 
and Pike 1972). It has recently been established (Hunt and Pollak 1990, Hunt 1990a, b) 
that relaxation processes of allposible relaxation times, from inversephononfrequencies 
to infinity play a role in the frequency-dependent transport in the electronic system in 
amorphous semiconductors (‘Fermi glass’), and as well in the Coulomb gap in impurity 
conduction systems (the ‘electron glass’). We argue here that a treatment of ionic 
transport incorporating this feature is probably necessary. As a result, the low frequency 
relaxation is seen to have non-local characteristics, and a conceptual link is established 
between DC and low frequency Acprocesses. In fact, the Dcconductivity may be regarded 
as arising from processes with infinite relaxation times. Thus an arbitrary upper limit on 
relaxation times is unjustifiable. Moreover, the role of Coulomb interactions in the 
relaxation process is emphasized, as argued by Jonscher (1977, 1980, 198l), Hill and 
Jonscher (1983) and Ngai (1984). At high frequencies we expect that a pair approxi- 
mation approach is indeed appropriate. The main criticism of the pair approximation, 
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as given by Dyre (1986,1988) and Jonscher (1977), is that the exponents in a(w)  cc ws 
appears to increase at higher frequencies, if it varies at all, in contradiction to the 
prediction that s should decrease. This criticism, however, has been made by confusing 
the near DC region on the log-log plot of a(w)  with the lower portion of the pair 
approximation regime, at least in the case of a-Si. (See also the conclusions.) This region 
is not described by the pair approximation, because to apply the pair approximation 
pairs with rates w = w must be able to respond much more rapidly to the applied field 
than the remainder of the system. In many cases it is evident that the loss peak defines 
the lower limit of applicability of the pair approximation (in the electronic glasses this 
has been shown explicitly, see the references to Hunt); it therefore represents the onset 
of the importance of non-local relaxation processes. This point of view is not entirely 
new, to the extent that the behaviour of a(w)  above the loss peak has been shown to be 
independent of the behaviour below the loss peak (Jonscher 1980). What is new is the 
implication that non-local relaxation processes are dominant below the loss peak, and 
that a pair approximation should suffice above the loss peak. In the non-local relaxation 
processes, in particular, in ionic conducting glasses, Coulomb interactions are expected 
to play an important role. 

The model presented here is sufficient to extract the Barton (1966)-Nakajima (1971)- 
Namikawa (1975) (BNN) relation, the position asymmetry, and typically large width of 
the loss peak, as well as approximate frequency dependences for a(o)  above and below 
the loss peak. It is consistent. as well, with an activated DC conductivity. It must be 
emphasized, however, that this treatment is still somewhat superficial in its application 
to ionic conduction in glasses; as a consequence areas for improvement in the theoretical 
treatment are pointed out. 

2. Model 

We assume, similarly as in Dyre (1986, 1988), an exponential dependence of individual 
relaxation times ti on energy barrier heights, 

z i  = to exp( - E i / k T )  (2.1) 

and assume also that Ei is a random variable. Here ti' is on the order of a phonon 
frequency, roughly 1012-1013 Hz. The width of the distribution of E values is roughly 
equal to k T ' ,  where T'  is the temperature at which a(w)  becomes frequency-inde- 
pendent up to frequencies nearly on the order of phonon frequencies. For kT < kT' the 
large spread in individual relaxation times allows an application of percolation theory 
to the calculation of the DC conductivity. As the only random variable is E ,  and not the 
length of the hop, r (as activation over a barrier requires no tunnelling factor), the 
percolation theory could consistently be called E-percolation. This process will yield an 
activated conductivity, as a limiting process with a specific barrier height will define the 
critical rate for DC transport. Provided the distribution of barrier heights is independent 
of temperature, this activation energy will also be temperature independent, 

At relatively large frequencies, the pair approximation (Pollak and Geballe 1961, 
Hunt 1990c) is quite generally based on the assumption that at frequency w processes 
with t = l /w dominate the conductivity, and that individual pair processes may be 
treated independently from one another. Such a treatment also requires a wide range 
of individual relaxation times; a fact which is compatible with the condition for the 
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application of percolation theory to the DC conductivity. In glasses the starting point for 
the pair approximation is the following equation, 

Ipa i r  cc r$n(w2t&ir  + iWtpair)/(l + w2ztair> (2.2) 
in which the AC current flowing in a pair, I,,,,, is proportional to the product of an inverse 
of the relaxation time of the pair, zpalr, and a frequency dependent factor appropriate 
for the conductance of a resistor and capacitor in series. This current is maximized when 
z l /w;  treating only isolated processes satisfying this condition yields I ( @ )  CC U ,  if the 
distribution of barrier heights is independent of barrier height. Otherwise the actual 
logarithmic dependence of the random variable E on z introduces logarithmic cor- 
rections in the dependence on the frequency w ,  making the functional dependence 
slightly sublinear at frequencies well below TO’. In analogy with the electronic glasses, 
we expect a frequency dependent conductivity at high frequencies that is approximately 
given by the pair approximation. As o is reduced, the density of pairs for which t < 1/ 
w increases, until at some point the approximation that the relaxation processes may be 
treated independently breaks down. As has been demonstrated by Hunt (1990c), in the 
Fermi glass it is possible to formulate a pair approximation which breaks down at a 
trequency proportional to the DC conductivity. At this frequency, the pair separation is 
approximately equal to the pair length. Also at this frequency, which is evidently 
approximately equal to the loss peak frequency, the pair and the low frequency approxi- 
mations yield the same temperature dependence of the conductivity. In ionic glasses, 
we assume that a similar principle is in operation; in particular, at frequencies w cc uDc, 
the separation of pairs with z < l /w is on the order of the hopping lengths. This 
assumption is compatible with the assumption that a critical rate, z-l,  exists which 
defines a DC conducting ‘network’. This viewpoint is compatible with the literature, as 
Butcher and Morys (1973), for example, have noted that the pair approximation is exact 
in the limit of low pair density. 

A rather frequently used procedure has been to include the entire system in a mean- 
field approximation. In the Fermi glass, the system is representable by the Miller- 
Abrahams (1961)-Pollak (1974) random impedance network. In the extended pair 
treatment of this network (Summerfield and Butcher 1982), for example, an arbitrary 
pair of sites is embededed in a medium of complex admittance Y, and the effective 
admittance Yeff of the pair plus the medium is averaged over all possible pairs under the 
se!f-consistency condition, Ye, = Y. This method generates an asymmetric loss peak, 
the appropriate DC conductivity, the BNN relation, the high frequency pair result, and 
an analytic, i.e. quadratic frequency dependence of the real part of the conductivity, 
Re a( w), below the loss peak. Since, however, the frequency dependence of u(w) below 
the loss peak in the electronic glass is not quadratic (as it isn’t in virtually all ionic glasses, 
and many organic systems as well), and since, moreover, the BNN relation has not been 
established in the Fermi glass (Long et a1 1988), it seemed preferable to avoid the 
approximations inherent in a mean-field approach, which moreover also neglects the 
dynamic effects of Coulomb interactions. 

Although the model for the low frequency conduction process in glasses is still 
sketchy, many parallels to glassy electronic systems exist and can be exploited. The 
electronic systems can be classified according to whether or not the inter-site Coulomb 
interactions dominate. The former system is termed the electron glass, the latter, the 
Fermi glass. The importance of Coulomb interactions can be determined by comparing 
the Coulomb gap width (in the single electron density of states) with kT.  At very low 
temperatures the opening of this gap in the single-electron density of states corresponds 
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to the increasing importance of Coulomb interactions. At higher temperatures, the 
glassy nature of the electronic system is due to the presence of very high disorder. The 
low frequency conductivity of the Fermi glass is strongly affected by the large scale 
inhomogeneities in the impedance network. A powerful advantage of the random 
impedance network is that the statistics of clusters of impedances are given in terms of 
percolation theory (Stauffer 1990). 

At lower temperatures, the Coulomb interaction is known to make the electronic 
system virtually spatially homogeneous in the vicinity of the Fermi energy, EF. In this 
case, the low frequency conductivity is very strongly affected by sequential correlations 
of individual transitions, also arising from Coulomb interactions. This latter situation is 
more closely analogous to the situation in ionic glasses, but a rigorous correspondence 
between electronic transport and a well-defined impedance network has only been 
established for the so-called ‘Fermi glass’. Thus the subsequent discussion will utilize 
analogies from both systems, but it must be admitted that no concrete definition of 
resistances and capacitances for the ionic glasses is available. 

An interesting contrast between the ‘electron glass’ and the ‘Fermi glass’ is that the 
DC current in the Fermi glass (Hunt 1990a) is carried by the DC cluster; large scale 
inhomogeneities can be represented by large regions of space with a higher conductivity 
(at frequency w) .  The electron glass, on the other hand has no rigidly defined clusters. 
A calculation of the time dependent current demonstrates that the polarization current 
derives from the temporal development of the clusters (Hunt 1990b). At the same time 
this constant growth of the clusters in which equilibrium has been reached supports a 
steady state current in the clusters as well. Thus there is no distinction between steady 
state (DC) clusters and polarization (AC) clusters. This point of view can be shown to be 
consistent with the assumption (made later) that the static polarizability of a cluster of 
N elements, as well as the effective resistance, do not depend on N .  It also allows the 
representation of the total AC conductivity, ~ ( w ) ,  as a(o) = up(w) + aDC, where the 
polarization current density calculated here defines the non steady-state contribution, 
up(o), to the total conductivity. 

In the above described new theory the frequency dependent polarization currents in 
clusters of impedances have been calculated and summed over all clusters to get the 
frequency dependent conductivity. This theory has been much more successful in 
explaining the low frequency dependence of ~ ( o )  and ~ ( w )  on the frequency and on the 
temperature. Moreover, it yields known theoretical results in one-dimensional systems. 
It only generates the BNN relation in systems where the effect of large scale inhom- 
ogeneities is severely modified through the effects of Coulomb interactions or ford > 6, 
the upper critical dimension for percolation theory. We believe that these conditions 
indicate its usefulness for describing conduction in ionic glasses, but it points up a 
problem in the choice of a specific form for the statistical distribution of large clusters. 
In the electronic glasses percolation statistics are used, but some modification of these 
statistics may be required in the Coulomb interaction correlated systems. These ques- 
tions will become clearer as the discussions develops. 

When relaxation processes considered are non-local, it is necessary first to determine 
how much charge can be transported by the dominant processes with relaxation time t ,  
and how far the charge is transported. The condition that relaxation processes with 
z = l /w dominate holds for low frequencies just as it does for the pair approximation 
regime. In the electronic system discussed above the problem is well-defined. It has 
been shown that a cluster of similar maximally valued impedances R ,  with individual 
relaxation times, t = RC = Re2/kT,  where C is a typical capacitance per maximally 
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valued resistance, has a maximum relaxation time tN = N%. Here N i s  the number of 
maximally valued resistances R on a one-dimensional path spanning the cluster (Hunt 
and Pollak 1990). The enhancement factor N 2  can be understood as the product of the 
number of charges transported through the chain (proportional to N )  and the number 
of rate limiting links (also proportional to N ) .  This result has been demonstrated to hold 
also when Coulomb interactions in a screening approximation are taken into account. 
It has also been shown (Pollak and Pohl 1975) that the current flowing in such a chain 
(to within 20% accuracy in the worst case) can be represented by the single (slowest) 
relaxation process, 

z N ( w )  = F , ( N ~ ) ~ ( N R ) - ~ ( O J ~ ~ ~ ,  + iwtN)/( l  + w 2 t 2 , )  

with the external field F = F ,  cos ut, the static polarizability of the (one-dimen- 
sional) path, and NR its effective resistance. To a good approximation (Hunt 1990a) it is 
then possible (except in one dimension) to set 

a(w) = O D C  + a,(@> (2.4) 

where aDC is proportional to the inverse of the critical (percolation) resistance, R,, and 
up( w )  is 

with nN,R defining the number of one-dimensional paths in which N maximally valued 
resistors of magnitude R are connected in series. If the statistics of nN,R are given in 
terms of the critical resistance, as in percolation theory, up(w) is automatically related 

In the electron glass, the proportionality of z N  to N2 does not hold. A treatment of 
the additional contribution to the free energy arising from the application of a very low 
frequency field has shown that the relation tN cz N is appropriate. This result is due to 
the ordering of the electrons brought about by the strong Coulomb interactions. We 
believe that the same result is likely to hold here. We assume (as is usual) that ionic 
hopping distances are usually only one or two lattice constants (i.e. on the order of or 
less than the ionic separation), and (as is also usual) that interactions are very important. 
In particular the concentration of ions may be lo4 larger than the density of electrons in 
gap states in, e.g., a-Si and a-Ge, so that typical electric field strengths due to interactions 
may be enhanced by a factor ( 104)2/3 = 600. Thus the range of temperatures for which 
the effects of Coulomb interactions are crucial is much larger than in the electronic 
systems, where effects due to the Coulomb gap are observed at temperatures below a 
few Kelvin. For this reason we think it probable that ionic glasses the hops of individual 
ions are strongly sequentially correlated over a much wider temperature range, in fact 
over the same temperature range that the high frequency AC conductivity is given by the 
pair approximation. In this picture the number of ions passed by the rate limiting links 
of a cluster is more nearly independent of the length of the cluster (in contrast to 
the non-interacting case, where the proportionality was to A@). A perfect sequential 
correlation of the hops would nevertheless result in a relaxation time proportional to N .  
Corresponding to the reduction in the relaxation time as compared to the non-interacting 
system, we expect to find a reduction in the effective resistance by a factor N ,  and in the 
static polarizability by a factor N 2  since each rate limiting process is traversed by a 
number of charges independent of N .  As a consequence the static dielectric constant is 
reduced by a factor N 2 ,  guaranteeing its convergence (except in one dimension) in 

to UDC. 
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contrast to the Fermi glass. We now write for the current in such a cluster (keeping in 
mind that the quantity R is not well-defined in this context) 

z ~ , ~  = ( l 2 / ~ ) ( o 2 t 2 N 2  + iwtN)/(1 + w2t2N2) (2.6) 
in analogy with (2.3) for the Fermi glass. Here 1 is the typical separation of the slowest 
processes. If some variation of percolation statistics is used, in which the cluster sizes 
are defined in terms of a critical resistance and the typical separation of these resistances, 
the product of the conductance R-' of this bond and the appropriate inverse length (i.e. 
the separation 1) will yield roughly the (activated) DC conductivity. 

In contrast to the Fermi glass, in which the chain current ZN,R(w) is a strongly 
increasing function of N ,  the result (2.6) has a prefactor independent of N .  Therefore 
the approximation made in the Fermi glass, that each cluster could be replaced by its 
longest chain, does not apply here. To find nN,R, then we take a sum over the product of 
the distribution of clusters with m as the longest chain length, and the distribution of 
chain lengths Non a given cluster with m as a maximum chain length. It can be shown 
(Hunt 1990) that the number of all N sequences with individual z values equal to the 
critical (DC) value is 

(2.7) nN == 1 - 3 N - 2 - d + d f  

with 1 a typical separation of the rate limiting processes, and where df is the fractal 
dimensionality associated with percolation in d dimensions. Note that in the quoted 
reference the roles of the symbols m and Nare reversed. In one dimension this equation 
(2 .7)  yields nN cc since d = df = 1, which agrees with known results. In higher 
dimensions, the difference between d and df is small (df = 2.5 in 3D, 1.9 in 2 ~ ) ,  so that 
nN does not vary strongly with dimension. We emphasize that this approach may be 
incorrect, as the result was derived from the assumption of the self-similarity of the 
percolation path. On the other hand, it is clear that the result nN N 2  implies and is 
implied by one-dimensional transport. It is also clear that the density of large clusters 
must be reduced over the one-dimensional value if the transport is through clusters 
which have two or three dimensional structure. In fact, however, this is one of the critical 
points at which a more in depth analysis may result in modifications of the theory. 

It is interesting that any distribution of nN whose first moment converges will preserve 
the BNN relation, although different powers of w result. But note again the exception in 
one dimension for which nN = W 2 .  In this case, as we will see, the dielectric constant 
will diverge logarithmically in the limit of zero frequency and the BNN relation will not 
be obtained. 

Proceeding, we have, 

up(cr)) = ( 1 ~ 1 - 1  ~ d f - d - 2 ( ~ 2 t : ~ *  + i o t cN) / ( l  + o 2 t : ~ 2 )  

(2.8) 

Here the symbol t, represents a critical relaxation time, for which it is possible to just 
find a macroscopic cluster of relaxation times t < t,. Use of this value for t is justified 
by the application of percolation cluster statistics for clusters with the critical rate. The 
result for the AC conductivity is 

O(W) = uDC + ( T D C [ ( W / W , ) ~ + ~  + i(w/wc) - i ( ~ / w , ) ~ + ~ ]  (2.9) 
with 6 = d - df the anomalous dimensionality, and where numerical factors have not 
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been included, but are of order one in the leading terms. Obviously the numerical factor 
of the second term in the imaginary part of the conductivity, Im u(w) is considerably 
smaller than in the first term. The result for the dielectric constant, &(U) is 

leading to (as long as d > 0) 

Re E ( o )  u D C / u c  (2.11) 

for the static dielectric constant, E ( O ) ,  which is essentially the BNN relation. An equivalent 
statement is that the loss peak frequency scales with temperature exactly as does the DC 
conductivity. This statement can be understood if one considers the following. Results 
for a(w) for frequencies higher than the loss peak frequency generated by application 
of the pair approximation become invalid near the critical frequency, oc (because of the 
formation of clusters of processes of relaxation times tc) ,  and yield at this frequency 
approximately the same absolute value of the conductivity as does the low frequency 
result. As a consequence, the critical frequency may bc approximately identified with 
the loss peak frequency. 

In case transport is along purely one-dimensional paths, the low frequency con- 
ductivity is exactly linear in the frequency (as in the electron glass), and the dielectric 
constant acquires a logarithmic divergence in the limit of zero frequency. 

Note that the sublinear frequency dependence in Im E ( O )  can account for a broad 
loss peak. Moreover, the power on the low frequency side of the loss peak, d ,  is unrelated 
to the power on the high frequency branch, s - 1, typically a small negative number, 
since a(@) in the pair approximation is slightly sublinear. Thus asymmetry is a general 
property of such a treatment as the processes on both sides of the loss peak are distinct. 

We leave the expression for a(w) in the above rather general form. It is suggestive 
that the dimensionality of the conducting paths may determine the exponent on the 
conductivity. In this vein, we mention that Namikawa's study of the so-called BNN 
relationship found that virtually all glasses satisfied uDc = Bo,E(O), but with two dif- 
ferent values of B. The value of B obtained from the above treatment is dependent 
on d ,  and this correspondence is suggestive. Furthermore, powers of the frequency 
compatible with those derived have been observed. It is also suggestive that a third class 
of ionic glasses exist for which the BNN relationship is not satisfied. In particular, a 
roughly logarithmic divergence in the dielectric constant has been measured even to the 
lowest accessible frequencies, although, in fact a kink in E ( @ )  is seen at frequencies 
corresponding to the loss peak frequency. 

Nevertheless, a correspondence between this theory and experiment should not be 
regarded as conclusively established. Both theoretical and experimental uncertainties 
exist. In the first place, although the values of B seem to fall into two classes, no 
corresponding universality in the powers of the frequency in the frequency dependent 
dielectric constants and the conductivity has been noted. Furthermore, the universality 
implied by percolation statistics has been derived specifically for clusters of impedances 
which are not strongly correlated by Coulomb interactions. This degree of universality 
may not be appropriate for ionic glasses, although one might argue that an even higher 
degree of universality would be expected. Finally, the assumption that the relaxation 
time of a cluster of individual rate limiting process should depend linearly on the 
number of such processes connected in succession, is an assumption. Although it can be 
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supported more rigorously in the case of the electron glass, for which a very specific 
model exists, it has not been verified here. 

3. Conclusions 

We have shown that the objections to the application of the pair approximation to the 
relatively high frequency conductivity of glasses can be removed, or are in error. These 
objections have been: (i) that the powers in us increases with frequency, if it changes 
at all, (ii) that the pair approximation implies a zero DC conductivity, (iii) that the loss 
peak is not a feature of the pair approximation, d ,  that the pair approximation does 
not reproduce the BNN relation. The last three objections can be removed if the pair 
approximation is applied only in the region for which it is valid, namely when the density 
of pairs treated is small, but is replaced by a suitable modification when this condition is 
violated (as in this work). Objection (i) can be seen to be false if one examines closely 
the data quoted by Jonscher. In particular, we consider figure 2 in the Nature article 
(1977) which has been reproduced elsewhere, and referred to by Dyre as well. Jonscher 
claims that the power of s in three cases increases with w, specifically a-Si, p-alumina, 
and stearic acid. The first case has been investigated much more carefully by Long 
(1988). In fact the region to which Jonscher refers is near the DC value of a(w) ,  and the 
rounding on the log-log scale represents chiefly the constant term in a(o), namely 
uDC. This frequency range actually exhibits (Long 1988) a larger power than at higher 
frequencies and corresponds to the lower branch of the loss peak when the data for the 
dielectric constant are analyzed. For this range of frequencies the pair approximation is 
inadequate. In fact the treatment referred to here is appropriate for this range of 
frequencies, and the agreement is found to be superior to that of other theories, such as 
the extended pair approximation of Summerfield and Butcher (1982) and Summerfield 
(1985). Nevertheless, the extended pair approximation is in agreement with this theory 
in the rough generalities. 

We have shown that application to the AC conductivity of a theory incorporating 
non-local relaxation effects is consistent with the general trends of experiment in a wide 
variety of systems. It reproduces the BNN relation in ionic glasses where the role of 
Coulomb interactions is known to be extremely important. It also gives results for a(w) 
which are compatible with experiment in specific electronic conduction systems, in 
particular in the ‘Fermi glass’ and in the ‘electron glass’. It has been shown that under 
conditions where the Coulomb interactions may be neglected, or treated perturbatively, 
the BNN relationship does not result. When Coulomb interactions are strong enough to 
sequentially correlate individual transitions, the BNN relationship obtains, unless the 
transport is restricted to purely one-dimensional channels. As a consequence the role 
of Coulomb interactions in the derivation of the BNN relationship is emphasized 
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